BIOLOGICAL TERRORISM

D.A. Henderson, M.D., M.P.H. Distinguished Service Professor, The Johns Hopkins University Conference on New and Emerging Infections Centers for Disease Control

Until recently, the subject of biological terrorism has been little discussed or written about in the medical literature or, for that matter, in the public press. Until recently, I personally had doubts about publicly discussing the subject because of concern that it might entice some to undertake dangerous, perhaps catastrophic experiments. However, events of the past 12-18 months have made it clear that likely perpetrators already envisage every agenda one could possibly imagine.

For the multical terms of the multical terrorism being considered more than a theoretical possibility:

1)That biological weapons have so seldom been deployed that precedent would suggest they would not be used.

2) That their use is so morally repugnant that none would deign to use them.

3)That it is technologically so difficult to produce organisms in quantity and to disperse them that the science is beyond the reach of any but the most sophisticated laboratories.

4) That, like the concept of a "nuclear winter", the potential destructiveness of bioweapons is essentially unthinkable and so to be dismissed.

Each of these avguments is without validity.

Each of these arguments is without validity.

We now know that there are nations and dissident groups who have both the motivation and access to skills to selectively cultivate some of the most dangerous The true acrosses of the Heat has become apprend only writes the port 3 gents pathogens and to deploy them as agents in acts of terrorism or war. Traq was discovered after the Gulf War to have had a stattingly large biological weapons but just have the end of the transfer and the file and deployed bombs, program and gents in acts of the produced, filled and deployed bombs, rockets and aircraft spray tanks containing Bacillus anthracis and botulinum toxin (1,2). Its work force and technological infrastructure are still wholly intact. The Japanese cult, Aum Shinrikyo, in 1995, released the nerve gas Sarin in the Tokyo House, with they find divided and played or the only 2 webs age. This filled or the filled subway. It was later discovered to have, as well, plans for biological terrorism (3). efforts the another and both how the transfer divides of nutrient media, botulinum toxin, cultures of anthrax and drone aircraft equipped with spray tanks. Notably, members of this group had traveled to Zaire in 1992 to obtain samples of Ebola virus for weapons development. The cult is still intact and thousands of followers are said to be present in Russia.

Special concerns have arisen in recent years regarding Russia's bioweapons capability. Through defectors, we have learned that this was an enterprise far more extensive and far more sophisticated than any had imagined at the end of the cold war. It is almost certain that large components are still active. Special concerns have emerged over recent months regarding the status of one of the largest and most sophisticated of the facilities, called Vektor, located in Koltsovo, Novosibirsk. Through the early 90s, this was a 4000 person, 30 building facility with ample BL-4 facilities, both for specimens and for isolation of human cases. It is situated on an open plain and was protected by an elite guard. Here is where the smallpox virus is kept and here is where work has been going on using Ebola, Marburg and the hemorrhagic fever viruses. Visits last autumn disclosed a half-empty facility and a diminished number of guards who have not been paid for months. No one can say where the scientists have gone (4) nor is there confidence now that this is the only storage site for smallpox virus outside of the CDC.

The number of countries engaged in biological weapons experimentation has grown from four in the 1960s to eleven in the 1990s (5). Meanwhile, the bombing of the World Trade Center and the Oklahoma City Federal Building has dramatized the serious problems which even small dissident groups could cause.

The entire August 6 issue last year of the Journal of the American Medical Association was given over to a comprehensive review and examination of the problems posed by biological terrorism and warfare (6). Four important observations deserve special note. First in the fact that biological terrorism is more likely than ever before and far more greatly to be feared than either explosives or chemicals. At a congressional hearing, Colin Powell said "Of all the weapons of mass destruction, biological weapons worry me most". Sam Nunn asserted that it was not a question of "iff" but "when".

Second is the fact that civilian preparation has scarcely begunt even the subject of bioterrorism has been little discussed publicity. Nirtually no funds have yet been made available to strengthen the public health and medical infrastructure. Third is the recognition that prevention of such episodes or countering them will be extremely difficult. Recipes for making biological weapons are now available on the Internet and even groups with modest finances and basic training in biology and engineering could develop, should they wish, an effective weapon (7) and at little cost.

Fourth is the fact that detection or interdiction of those intending to use biological weapons is next to impossible. Thus, the first evidence of intent to use such weapons will almost certainly be the appearance of cases in hospital emergency rooms. These whe are specialists in infectious diseases thus constitute the front line of defense whether or not they desire to do so.⁴ The rapidity with which they and those manning the emergency rooms reach a proper diagnosis and the speed with which preventative or therapeutic measure are applied could well spell the difference between 1000s and perhaps tens of thousands of casualties. Indeed, the survival of those physicians and health care staff who are caring for the patients may be at stake. However, there are today few indeed who have ever seen so much as a single case of smallpox or plague or anthrax or, for that matter, would recall from the recesses of memory the characteristics of such cases. Few, if any, diagnostic laboratories would presently be prepared to confirm promptly such a diagnosis.

Most persons reviewing this subject detail a long list of potential pathogens

but, in fact, only a handful share the characteristics of being reasonably easy to prepare and to disperse and being able to inflict sufficiently severe disease so as to paralyze a city, perhaps even a nation. In 1994, Vorobyev, a Russian bioweapons expert presented to a working group of the National Academy, the conclusions of Russian experts as to the agents most likely to be used (8). Smallpox headed the list followed closely by anthrax and plague. Recently, a Russian defector reported that Russia had stockpiled 30 metric tons of dried anthrax spores and 20 tons each of smallpox, plague and tularemia -- all of which have been weaponized. None of these agents has so far effectively been deployed as a biological weapon and thus, no real world events exist which provide the basis for suggesting likely scenarios. However, for smallpox, we have had several well-documented importations into Europe over recent decades; two bear recounting.

Before doing so, let me recall for you the disease, smallpox. It is caused by a virus which is spread from person to person, each infected person, in turn, experiencing the characteristic fever and rash. Infection caused by the virus invariably results in symptomatic disease. There are no mild, subclinical infections among unvaccinated persons. After an incubation period of about 10 to 12 days, the patient experiences high fever and aching pains. (slide 1,2,3,4) Then a rash begins with small papules developing into pustules about day 7-8 and finally changing to scabs about day 12. About 30% of all unvaccinated patients died of the disease. There was, and is, no specific treatment.

The potential for smallpox as an aerosolized agent was vividly demonstrated in an outbreak in Germany in 1970 (11). That year, a German electrician returning from Pakistan became desperately ill with high fever and diarrhea. On January 11, he was admitted to a local hospital and isolated in a separate single room on the ground floor because it was feared he might have typhoid fever. He had contact with only two nurses over the next three days. (slide 5) On January 14, a rash developed and on 16 January, the diagnosis of smallpox was confirmed. He was immediately transported to one of Germany's special isolation hospitals and more than 100 000 persons were promptly vaccinated. The hospital had been closed to visitors for several days prior to admission of the patient because of an influenza outbreak. After the diagnosis of smallpox was made, hospital patients and staff were guarantined and remained so for four weeks. Patients and staff were vaccinated, very ill patients receiving VIG first. However, the patient had had a cough, a symptom seldom seen with smallpox and, as you know, coughing can produce a large volume. small particle aerosol much as one would expect were smallpox to be used as a terrorist weapon. (slide 6) Subsequently, 19 cases occurred in the hospital, including (slide 7) four in other rooms on the patient's floor of the hospital; eight on the floor above; and nine on the third floor. Two were contact cases. One of those afflicted was a visitor who had spent less than 15 minutes in the hospital and had only briefly opened a corridor door, easily 30 feet from the patient's room, to ask directions. Three of the patients were nurses, one of whom died. And this was in a well-vaccinated population. One needs no better illustration than this to understand that smallpox virus in an aerosol

has a considerable capacity to spread over a considerable distance and to infect at low dosages.

The experience of Yugoslavia in February 1972 is also instructive in comprehending the havoc created even by a small outbreak. Yugoslavia's last previous case of smallpox had occurred 45 years before, in 1927. Nevertheless, Yugoslavia, like most countries throughout the world had continued population-wide vaccination to protect itself should an importation occur. In 1972, a pilgrim returning from Mecca became ill with an undiagnosed febrile disease. Friends and relatives visited from a number of different areas and two weeks later, 11 of them developed high fever and rash. None were aware that others were ill and physicians who saw the patients failed to make a correct diagnosis. Few had ever seen a case of smallpox.

One of the 11 patients who acquired smallpox was a 30-year-old teacher who quickly became critically ill with the hemorrhagic form. (slide 8) This form of smallpox is not readily diagnosed even by experts. The Yugoslav teacher was first given penicillin at a local clinic but as he became increasingly ill he was transferred to a dermatology ward in a city hospital, then to a similar ward in the capitol city and finally, to a critical care unit because he was bleeding profusely and in shock. He died without a definitive diagnosis being made. He was buried two days before the first case of smallpox was recognized.

(slide 9) The first cases were correctly diagnosed four weeks after the first patient became ill but, by then 150 persons were already infected. Among them were 38 who were infected by the young teacher, including two physicians, two nurses and four other hospital staff. The cases occurred in widely separated areas of the country. By the time of diagnosis, the 150 secondary cases had already begun to expose yet another generation and, inevitably, questions arose as to how many other yet undetected cases there might be. The country was in panic.

Government health authorities saw no alternative but to launch a nation-wide vaccination campaign. Mass vaccination clinics were held and check points along roads were established where vaccination certificates were examined. Twenty million persons were vaccinated. Hotels and residential apartments were taken over, cordoned off by the military and all known contacts of cases forcibly moved into these centers under military guard. Some 10 000 persons spent two weeks or more in such isolation. Meanwhile, Each of the neighboring countries closed its borders to all () traffic Nine weeks after the first patient became ill, the outbreak was stopped -- 175 patients had developed small pox and 35 had died -- and this was in a generally well-vaccinated population and it was, in fact, a small outbreak.

What might happen if smallpox were to be released today in a U.S. city? First, it is important to recall that routine vaccination stopped in the U.S. in 1972, 25 years ago. Thus, there are large numbers who have never been vaccinated and, for virtually all others, vaccine immunity has been waning for more than 25 years. Based on what

we know, it is unlikely that more than 25% would have any residual protection. Suppose that some modest volume of virus were to be released perparts by exploding a light bulb containing virus in a Washington subway. The event would go unnoticed until the first cases with rash began to appear perhaps 9 or 10 days later. With patients being seen by different physicians in different clinics and by individuals who almost certainly had never before seen a smallpox case, it is probable that several days would elapse before the diagnosis of smallpox would be confirmed and an alarm sounded.

Assume that perhaps 100 persons had been infected and would require hospitalization. As soon as smallpox was suspected, this number would soon be submerged among a group of patients many times larger, perhaps 200 or 300 persons, all with illnesses with fever and rash but whose diagnosis was uncertain. Some would be reported from other cities and other states. Where would all of these patients be admitted? It is doubtful that there are more than perhaps 50 to **7**5 hospital beds in the metropolitan D.C. area which provide negative pressure isolation. And who would care for the patients? Few hospital staff have any smallpox immunity. Couple this with the problems posed by the one or two severe hemorrhagic cases which typically have very short incubation periods and would have already been admitted to hospital before smallpox was suspected. They would have been cared for by a large, unprotected intensive care team.

What of contacts? Based on experience in other outbreaks, the number of

contacts of confirmed or suspected cases would number in the thousands, if not tens of thousands. What measures should or would be taken to deal with them. Would they be isolated as in Yugoslavia and if so, where?

Logistics could be simplified if rapid, easily used laboratory tests could confirm or rule out smallpox among suspected cases. At present, however, such tests are known only to scientists in two government laboratories

Predictably, there would be an immediate clamor for mass vaccination such as occurred in the cited outbreaks in Germany and Yugoslavia. Present U.S. stocks of smallpox vaccine are nominally listed at 15 million doses but, as it is packaged, the *ind*, *for other man*, *formatively for and fold for the Tet*. Useful number of doses is perhaps half that number. How widely does one apply this vaccine and how quickly? Comparatively few doses might be needed were vaccine able to be limited strictly to close contacts of confirmed cases. However, the realities of dealing with even a modest-sized epidemic would almost certainly preclude *filter* a cautious, measured vaccination effort. Present reserves of vaccine would rapidly disappear and there is, at present, no manufacturing capacity anywhere to produce additional vaccine. If an emergency effort were made to produce new stocks of smallpox vaccine, at least 30 to 36 months would elapse before significant stocks became available.

It is apparent that even a modest-sized outbreak offers an agenda replete w aroblems

What of anthrax which has been so enthusiastically embraced by both Iraq and the Aum Shinrikyo? Their interest, in part, stems from the fact that the organism is so easy to produce in large quantity. In its dried form it is extremely stable. What the effect of aerosolized anthrax might be on humans once had to be inferred from animal experiments and the occasional human infection among workers in factories processing sheep and goat hides (13) What was clear is that inhalation anthrax is highly lethal. Just how lethal became evident in the 1979 Sverdlovsk epidemic (14).

(slide 10) In all, 77 cases were identified with certainty of whom 66 died. It is suspected that the actual total was considerably more than 100. The cases lived or worked somewhere within a narrow zone extending some four kilometers south and east of a military bioweapons facility. An accidental airborne release of anthrax spores occurred during a single day and may well have lasted no more than minutes. Further investigations revealed anthrax deaths among sheep and cows in six different villages ranging up to 50 kilometers southeast of the military compound along the same axis as the human cases.

(slide 11) Of the 58 cases with known dates of onset, only nine experienced symptoms within a week after exposure and some experienced the onset of disease as late as six weeks after exposure. Whether the onset of illness occurred sooner or later, death almost always followed within one to four days after onset. However, there did appear to be a somewhat higher proportion of survivors after the fourth week. This almost certainly resulted from the widespread application of penicillin

prophylaxis and anthrax vaccine both of which were distributed in mid-April throughout a population of 59 000 persons.

Meselson and his colleagues who documented this outbreak calculate that the weight of spores released as an aerosol could have been as little as a few milligrams or as much as "nearly a gram". Note that Iraq acknowledged producing at least 8000 Liters of solution with an anthrax spore and cell count of 109/ml. Recall also that Russia has a reported 30 tons of dried anthrax spores.

The ramifications of even a modest-sized release of anthrax spores in a city are profound. Bear in mind that the small particle aerosol penetrates interior spaces such that the risk is roughly equivalent whether an individual is inside or outside. Emergency rooms would begin seeing a few patients with high fever and some difficulty breathing perhaps 3 to 4 days following exposure. By the time they were seen, it would be too late for antibiotic therapy. Essentially all would be dead within 24 to 48 hours. No emergency room physicians or infectious disease specialists have ever seen a case of inhalation anthrax; medical laboratories have had virtually no experience in its diagnosis. Thus, it is probable that a delay of at least 3 to 5 days would elapse before a definitive diagnosis.

Once the diagnosis was made, one would be faced with the prospect of what to do over the succeeding 6 to 8 weeks. Should vaccine be administered to those who might have been exposed? Unfortunately, there is at present, little vaccine available

and no plan at present to produce any for civilian use. Should antibiotics be administered prophylactically? If so, which antibiotics and what should be the criteria for exposure? What quantity would be required to treat an exposed population of perhaps 500,000 persons over a treat period? Should one be concerned about additional infections occurring as a result of anthrax spores being subsequently resuspended and inhaled by others? Finally, when does one permit any in the population to return to the affected area. This is a serious concern given the fact that anthrax spores may persist in the environment for 40 years or more and methods for decontamination are extremely costly and conceivably impossible for many settings.

We are today ill-prepared to deal with a terrorist attack which employs biological weapons. To date, the focus of concern with respect to countering civilian terrorism has been almost wholly on chemical and explosive weapons and a response which is, at most, a modest extension of existing protocols to deal with a hazardous materials incident. A chemical release or a major explosion is far more manageable than the biological challenges posed by smallpox or anthrax. Following an explosion or a chemical attack, the worst effects are quickly over; the dimensions of the catastrophe can be defined; the toll of injuries and deaths can be ascertained; and efforts can be directed to stabilization and recovery. Not so following use of smallpox or anthrax. Day after relentless day, additional cases could be expected – and in new areas.

The specter of biological weapons use is an ugly one, every bit as grim and

foreboding as the picture which has been painted of a nuclear winter. As was done in response to the nuclear threat, I believe that we, as a medical community, bear a responsibility to educate the public and the policy makers as to the nature of that threat. There is a need to build on the 1972 Biblic and Torin Weaports. Convention to strengthen measures prohibiting the development and production of biological weapons and to assure compliance with agreements which are made. In a broader sense, there is the need to build a strong moral consensus utterly condemning biological weapons.

But this is not enough. In the near term, we need to be as prepared to detect and diagnose, to the detect endemission cases and to respond appropriately to biological weapons use as we need to be prepared to respond to the threat of new and emerging infections. In fact, the needs are convergent. We need at international, state and local levels, a greater capacity for surveillance; we need a far better network of laboratories and better diagnostic instruments; we need a more adequate cadre of trained epidemiologists, clinicians and researchers.

On the immediate horizon, as well you know, we face heightened risks associated with the crises in the Middle East. We cannot delay in the development and implementation of strategic plans for coping with civilian bioterrorism. The needed stocking of vaccines and drugs as well as the training and mobilization of health workers, both public and private, at state, city and local levels will require time. Knowing well what little has been done to date, I can only say that a mammoth task

N Kenon 2200 (16) What is being done? The National bas boon given # 300 milling for the training and (100 permy) (Studly) atepployment of 55+ 22 men special Chen-this Units. What role they might play in grid course control is for from clear. The Navy & Marine Corps has established a 350 man Chem/Bris Ancident Response Force at Camp ha Joure NC , the DOD is developing a Sooman Chem/Bis Ruick Regence Force in Alberteen MD. The FB I have added 150 new agent. The Post the detail dependent The creential personnel who will be dealing in the such as arthres, plaque a smallpox are one understiffed state and lord fealth departments and emorgency and nifertims discare stiff at medical centers with back - up not primarily from eDC. No finds whatsoen have been mide anilable for strongthoning this No fundes have boon made available for definition needed rore adel to the for the infrastructure. In fact, as state and local bist the Africistoshifed last wark at a Serak Appropriations Committee hearing, they feel totally unpropased the inner to because in fact, It no are has fill even mit as yet plans and transet with them It discuss the Treeds. The GAO, in a December 1547 report, documental that approximately +7 billing per per in (nb. instryich instrument) heig opend for counter torrorising of which titles opends #17 milling. No per a grave throat. He are a grave throat. He over then was an opportaining for the Public Health borrises & stop forward and be and advocany terminate the material public health, then is the states in hatting of the descent public health, then is the

Il the nation is propared to equal \$ 300 willing for stand by Nathonal Cocard Units, survey it should be more than propared to aspend \$1 billin in support of the infrastructures which is expected to hear the hurden of response to the total pic terrorisin and to other new and emergent infection Jum whethere some .

the From our vantage print at Sthens Hopkin, we state see the ortration as cotronally anois and War will and so the leccion because foundly capablish a Center for Civilian Biodefearer Studies, a and to Center which will orderarow & galoanize the nuclical and public beet to commenty. I've look formal to working cloudy with the Public Keeth Service in meeting the challenge of bis formaria.

The subject of pickerrorion,
I appreciate you invitation for me & speak with you an fai only out which, I nget to say,
in that to Known to or discussed by more than a hand ful of our colleagues in the Public Health Service. My
intent tacky is to portray for you the rachtion and dimensions of that Threat a to indicable to you why
It is cuit ical that the Public Health Service assumes a pleaduship role on behalf of the nation's public
health and medical comminding In brief, one might charactorize what I have to say as a call to arms.
For me, this have provent the carries schoes from the past. 43 years ago, I
He PHS and new, weaked Sand WWIL
Jornod, Allers hangenuir's [EIS - That was trave up - desring the Rozean cuifled.] Alt had been
a hading scientist among the group concurred about the thread of bickgivel weapons. That Throat had
been made very sel the to so tonoire sequeriment atron of fapen's informans Unit 731 and Japan's issed biological
in China. I there was weepons daggets this angle on that North Koroa a China night onback on a his torrorist campaign is
This country and do, in 1957, the EIS was exclud - a cadro of spidemidogists, primarily arranged to
states and medical centers across the country - It be an at home preyoney call to mires try ate
spidomis so as I detait at the carties / provible time they us of a bio mapon. All ES officies and
Trained with regard to likely organisms to be used AUDAN represtigation

for the find CDC rapidly assumed national statures as a force and an advocat for infections discase successfund and the values of they say, is history. Here, March Suddhall the thready There is the sate of proceedent for PHS leadenting A proceed fort on the destrond pield, March Jose and procedent for PHS leadenting A proceed fort on the destrond pield, March Jose and procedent for PHS leadenting A proceed for the destrond pield, March Jose and procedent for PHS leadenting A proceed for the destrond pield, March Jose and procedent for PHS leadenting Once public bedthand medicine nere very much put of the bisdefarest ective. They are an orientedly at which watery econols out of the loop. Let we down that helplomber thank again is February I procented (the of y what I will moved down the tweet of required for the offered from this a flood of write time for enformers on bistoriorium - most was comprised Dod and bot stiff I public, frie, FBI, with lighter of the state of a or case in all some on proceeding medicine. Bushy was anyone from public heat the a there of edictive a whalt infections discore services or from height anonyound.